1 月 2 日消息,机器学习和人工智能已经在各行各业掀起了新的变革浪潮,其重点表现形式是各种大模型支撑的“智能体”(agent),指能自主活动的软件或者硬件实体。
这些“智能体”可以和用户进行自然对话,并根据对话内容独立处理各种任务,展示了它们在众多领域彻底改变任务解决方式的潜力。
不过这些人工智能驱动的“智能体”面临的一个重大挑战是,它们倾向于孤立运行,经常会重复错误,并采用低效的试错方法,限制了它们的效率,阻碍了它们的学习过程。
虽然大语言模型陆续开发了上下文敏感记忆、多步骤规划和战略性工具等高级功能,但这些“智能体”在执行任务时通常无法吸取历史经验,从而导致其解决问题的能力效率低下。
来自清华大学、大连理工大学和北京邮电大学的科研团队近日推出了突破性框架--“体验式协同学习”(Experiential Co-Learning),目标是大幅提高“智能体”的学习能力。
这一创新方法将过去的经验融入到“智能体”的操作结构中,从而重新定义了“智能体”的协作和学习方式。
该框架包括三个不可分割的模块:共同追踪(co-tracking)、共同记忆(co-memorizing)和共同推理(co-reasoning),每个模块都在增强“智能体”的协作和学习能力方面发挥着至关重要的作用。
共同追踪:“智能体”进行合作演练,对各种训练任务的“程序轨迹”进行细致追踪。这种跟踪为“智能体”分享经验和合作制定策略奠定了基础。
共同记忆根据外部环境反馈,从这些轨迹中策略性地提取“快捷方式”,从而进一步推进上述工作。这些“快捷方式”被整合到“智能体”的集体经验库中,使他们能够参考过去的经验,加强未来的任务解决策略。
共同推理结合了“智能体”的集体经验库,使它们能够通过细化指令和响应进行更高级的互动。通过利用各自的经验知识,“智能体”可为未知任务提供更有洞察力和更准确的解决方案。
团队在部署“体验式协同学习”之后,发现可显著提高“智能体”的学习能力,具备更高的协作效率,大大减少了重复性错误和执行时间,并减少了软件开发中对额外人力参与的需求。
“智能体”能够从过去的经验中回忆并应用高质量的 "捷径",再结合底层 LLM 的能力,证明了性能的提高。
该框架使“智能体”能够从过去的经验中学习并有效利用这些经验,从而弥补了它们在操作能力上的一个关键差距。
这一进步提高了自主“智能体”的效率,减少了它们对人工干预的依赖,为未来的独立智能系统铺平了道路。
附上论文参考地址:https://arxiv.org/abs/2312.17025v1
本文链接://www.dmpip.com//www.dmpip.com/showinfo-45-3145-0.html清华大学合作推出体验式协同学习框架:让 AI 总结历史经验,大幅提高学习能力
声明:本网页内容旨在传播知识,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。邮件:2376512515@qq.com