ViewRootImpl位于视图层次结构的顶部,负责View和WindowManager之间的通信。
ViewRootImpl关联了多个类和接口,IWindowSession、Choreographer及其FrameCallback接口等。IWindowSession用于客户端和WindowManagerService之间进行窗口管理操作的接口,允许ViewRootImpl与WindowManagerService进行通信,执行如添加、删除、更新窗口等操作。
scheduleTraversals()方法负责将一次视图遍历(traversal)排期到其调度计划中,但并不会立即执行遍历操作。方法被许多操作所调用,比如当视图的大小、位置等属性发生变化时,或者当调用requestLayout()、invalidate()等方法时,都会触发scheduleTraversals()。作用是将视图的测量、布局和绘制操作(即遍历操作)放入待执行队列中,并注册一个底层的刷新信号监听器。
public void invalidate(boolean invalidateCache) { invalidateInternal(0, 0, mRight - mLeft, mBottom - mTop, invalidateCache, true);}void invalidateInternal(int l, int t, int r, int b, boolean invalidateCache, boolean fullInvalidate) { ... // Propagate the damage rectangle to the parent view. final AttachInfo ai = mAttachInfo; final ViewParent p = mParent; if (p != null && ai != null && l < r && t < b) { final Rect damage = ai.mTmpInvalRect; damage.set(l, t, r, b); //调用父容器的方法,向上传递事件 p.invalidateChild(this, damage); } ...}public final void invalidateChild(View child, final Rect dirty) { ..... ViewParent parent = this; do { View view = null; if (parent instanceof View) { view = (View) parent; } if (drawAnimation) { if (view != null) { view.mPrivateFlags |= PFLAG_DRAW_ANIMATION; } else if (parent instanceof ViewRootImpl) { ((ViewRootImpl) parent).mIsAnimating = true; } } // If the parent is dirty opaque or not dirty, mark it dirty with the opaque // flag coming from the child that initiated the invalidate if (view != null) { if ((view.mViewFlags & FADING_EDGE_MASK) != 0 && view.getSolidColor() == 0) { opaqueFlag = PFLAG_DIRTY; } if ((view.mPrivateFlags & PFLAG_DIRTY_MASK) != PFLAG_DIRTY) { view.mPrivateFlags = (view.mPrivateFlags & ~PFLAG_DIRTY_MASK) | opaqueFlag; } } //调用ViewGrup的invalidateChildInParent,如果已经达到最顶层view,则调用ViewRootImpl的invalidateChildInParent。 parent = parent.invalidateChildInParent(location, dirty); if (view != null) { // Account for transform on current parent Matrix m = view.getMatrix(); if (!m.isIdentity()) { RectF boundingRect = attachInfo.mTmpTransformRect; boundingRect.set(dirty); m.mapRect(boundingRect); dirty.set((int) Math.floor(boundingRect.left), (int) Math.floor(boundingRect.top), (int) Math.ceil(boundingRect.right), (int) Math.ceil(boundingRect.bottom)); } } } while (parent != null); }}
当VSYNC信号到来时(VSYNC信号是Android系统中用于同步屏幕刷新的信号),系统会从待执行队列中取出对应的scheduleTraversals()操作,并将其加入到主线程的消息队列中。然后,主线程会从消息队列中取出并执行这个操作,进而触发视图的测量、布局和绘制流程。
private void scheduleFrameLocked(long now) { if (!mFrameScheduled) { mFrameScheduled = true; if (USE_VSYNC) { //这里判断,当前执行的线程是否是创建该Choreographer的线程,如果是直接执行。否则通过handler 发送到 创建该Choreographer的线程去执行。 if (isRunningOnLooperThreadLocked()) { scheduleVsyncLocked(); } else { //这条message 最后处理还是调用到了scheduleVsyncLocked方法 Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_VSYNC); msg.setAsynchronous(true); mHandler.sendMessageAtFrontOfQueue(msg); } } else { final long nextFrameTime = Math.max( mLastFrameTimeNanos / TimeUtils.NANOS_PER_MS + sFrameDelay, now); if (DEBUG_FRAMES) { Log.d(TAG, "Scheduling next frame in " + (nextFrameTime - now) + " ms."); } Message msg = mHandler.obtainMessage(MSG_DO_FRAME); msg.setAsynchronous(true); mHandler.sendMessageAtTime(msg, nextFrameTime); } }}private void scheduleVsyncLocked() { mDisplayEventReceiver.scheduleVsync();}public void scheduleVsync() { if (mReceiverPtr == 0) { Log.w(TAG, "Attempted to schedule a vertical sync pulse but the display event " + "receiver has already been disposed."); } else { nativeScheduleVsync(mReceiverPtr); }}
在这个过程中,performTraversals()方法会被调用。方法会执行实际的测量、布局和绘制操作。首先会调用measureHierarchy()方法进行测量,然后调用performLayout()方法进行布局,最后调用draw()方法进行绘制。这些操作会按照顺序执行,以确保视图能够正确地显示在屏幕上。最终通过nativeScheduleVsync()原生方法通知屏幕进行绘制。
performTraversals()方法负责启动视图的测量(measure)、布局(layout)和绘制(draw)流程。当需要创建视图、视图参数改变或界面需要刷新时,可能会从根视图DecorView开始重新进行测量、布局和绘制,这时就会调用到performTraversals()方法。
private void performTraversals() { ... performMeasure(childWidthMeasureSpec, childHeightMeasureSpec); ... performLayout(lp, desiredWindowWidth, desiredWindowHeight); ... performDraw();}void doTraversal() { //防止重入 if (mTraversalScheduled) { mTraversalScheduled = false; //移除同步屏障 mHandler.getLooper().getQueue() .removeSyncBarrier(mTraversalBarrier); performTraversals(); }}
图片
final TraversalRunnable mTraversalRunnable = new TraversalRunnable();void scheduleTraversals() { if (!mTraversalScheduled) { //移除同步屏障 mTraversalBarrier = mHandler.getLooper().getQueue().postSyncBarrier(); mChoreographer.postCallback( Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null); }}void unscheduleTraversals() { mChoreographer.removeCallbacks( Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null); }}public void postCallback(int callbackType, Runnable action, Object token) { postCallbackDelayed(callbackType, action, token, 0);}public void postCallbackDelayed(int callbackType, Runnable action, Object token, long delayMillis) { ... postCallbackDelayedInternal(callbackType, action, token, delayMillis);}private void postCallbackDelayedInternal(int callbackType, Object action, Object token, long delayMillis) { .... synchronized (mLock) { final long now = SystemClock.uptimeMillis(); final long dueTime = now + delayMillis; //把 任务添加到了mCallbackQueues 回调里面去,等待回调执行。 mCallbackQueues[callbackType].addCallbackLocked(dueTime, action, token); //now=0 ,走进scheduleFrameLocked()方法内 if (dueTime <= now) { scheduleFrameLocked(now); } else { Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_CALLBACK, action); msg.arg1 = callbackType; msg.setAsynchronous(true); mHandler.sendMessageAtTime(msg, dueTime); } }}//Choreographer内部类DisplayEventReceiver,重写了onVsync方法@Overridepublic void onVsync(long timestampNanos, int builtInDisplayId, int frame) { mTimestampNanos = timestampNanos; mFrame = frame; Message msg = Message.obtain(mHandler, this); // 设置成异步消息 msg.setAsynchronous(true); mHandler.sendMessageAtTime(msg, timestampNanos / TimeUtils.NANOS_PER_MS);}public void run() { mHavePendingVsync = false; doFrame(mTimestampNanos, mFrame);}// Choreographervoid doFrame(long frameTimeNanos, int frame) { ... doCallbacks(Choreographer.CALLBACK_TRAVERSAL, frameTimeNanos);}void doCallbacks(int callbackType, long frameTimeNanos) { CallbackRecord callbacks; // 从mCallbackQueues取出 callbacks = mCallbackQueues[callbackType].extractDueCallbacksLocked(now / TimeUtils.NANOS_PER_MS); for (CallbackRecord c = callbacks; c != null; c = c.next) { c.run(frameTimeNanos); }}// CallbackRecordpublic void run(long frameTimeNanos) { if (token == FRAME_CALLBACK_TOKEN) { ((FrameCallback)action).doFrame(frameTimeNanos); } else { // 这里也即是调用了TraservalRunnable的run方法,也即是三个绘制流程 ((Runnable)action).run(); }}
mHandler是当前主线程的handler,当接收到onVsync信号的时候,将自己封装到Message中,等到Looper处理,最后Looper处理消息的时候就会调用run方法最终从mCallbackQueues取回之前添加的任务再执行run方法,也就是TraservalRunnable的run方法。最终触发performTraversals方法进行界面刷新。
本文链接://www.dmpip.com//www.dmpip.com/showinfo-26-90041-0.htmlViewRootImpl如何负责管理绘制视图树和刷新界面
声明:本网页内容旨在传播知识,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。邮件:2376512515@qq.com
下一篇: 我们忘记了前端基础知识