K-means算法是一种非常经典的聚类算法,其主要目的是将数据点划分为K个集群,以使得每个数据点与其所属集群的中心点(质心)的平方距离之和最小。这种算法在数据挖掘、图像处理、模式识别等领域有着广泛的应用。
K-means算法的基本原理相对简单直观。算法接受两个输入参数:一是数据集,二是用户指定的集群数量K。算法的输出是K个集群,每个集群都有其中心点以及属于该集群的数据点。
K-means算法的执行过程如下:
迭代进行分配步骤和更新步骤,直到聚类中心不再发生显著变化,或者达到预设的最大迭代次数。
首先是头文件:
#include <iostream> #include <vector> #include <cmath> #include <limits> #include <algorithm>
我们定义了一个Point结构体来表示二维空间中的点。
struct Point { double x, y; Point(double x = 0, double y = 0) : x(x), y(y) {}};
这个结构体很简单,只有两个成员变量x和y,分别表示点在二维空间中的横坐标和纵坐标。还有一个构造函数,用于创建点对象时初始化坐标。
double distance(const Point& a, const Point& b) { return std::hypot(a.x - b.x, a.y - b.y);}
这个函数计算两个点之间的距离,使用了<cmath>库中的std::hypot函数,它接受两个参数(横坐标和纵坐标的差值),并返回这两点之间的欧几里得距离。
Point centroid(const std::vector<Point>& cluster) { double sum_x = 0, sum_y = 0; for (const auto& point : cluster) { sum_x += point.x; sum_y += point.y; } return Point(sum_x / cluster.size(), sum_y / cluster.size());}
这个函数计算一个点集的质心。质心是所有点的坐标平均值。函数遍历点集,累加所有点的x坐标和y坐标,然后分别除以点的数量,得到质心的坐标。
K-means算法的主体部分可以进一步拆分为几个小的步骤:初始化、分配点、重新计算质心和检查收敛性。
在K-means算法中,我们需要首先选择K个初始质心。在这个简单的实现中,我们随机选择数据集中的K个点作为初始质心。
std::vector<Point> centroids(k);for (int i = 0; i < k; ++i) { centroids[i] = data[rand() % data.size()];}
对于数据集中的每个点,我们需要找到最近的质心,并将其分配给该质心对应的集群。
std::vector<std::vector<Point>> clusters(k);for (const auto& point : data) { double min_distance = std::numeric_limits<double>::max(); int cluster_index = 0; for (int i = 0; i < k; ++i) { double dist = distance(point, centroids[i]); if (dist < min_distance) { min_distance = dist; cluster_index = i; } } clusters[cluster_index].push_back(point);}
分配完点后,我们需要重新计算每个集群的质心。
std::vector<Point> new_centroids(k);for (int i = 0; i < k; ++i) { new_centroids[i] = centroid(clusters[i]);}
如果新旧质心之间的变化很小(在一个很小的阈值以内),则算法收敛,可以停止迭代。
bool converged = true;for (int i = 0; i < k; ++i) { if (distance(centroids[i], new_centroids[i]) > 1e-6) { converged = false; break; }}
如果算法未收敛,则更新质心并继续迭代。
在主函数中,我们准备了一个简单的数据集(整体代码见最后),并设置了K值和最大迭代次数。然后调用kmeans函数进行聚类。
这就是K-means算法的一个基本实现。在实际应用中,可能还需要考虑更多的优化和异常情况处理,比如处理空集群、改进初始质心的选择方法、添加对异常值的鲁棒性等。
Cluster 1 centroid: (3.5, 3.9)(1, 0.6) (8, 5) (1, 4) (4, 6) Cluster 2 centroid: (5.41667, 9.06667)(2, 10) (2.5, 8.4) (5, 8) (8, 8) (9, 11) (6, 9)
#include <iostream> #include <vector> #include <cmath> #include <limits> #include <algorithm> struct Point { double x, y; Point(double x = 0, double y = 0) : x(x), y(y) {} }; double distance(const Point& a, const Point& b) { return std::hypot(a.x - b.x, a.y - b.y); } Point centroid(const std::vector<Point>& cluster) { double sum_x = 0, sum_y = 0; for (const auto& point : cluster) { sum_x += point.x; sum_y += point.y; } return Point(sum_x / cluster.size(), sum_y / cluster.size()); } void kmeans(std::vector<Point>& data, int k, int max_iterations) { std::vector<Point> centroids(k); std::vector<std::vector<Point>> clusters(k); // 随机化第一个质点 for (int i = 0; i < k; ++i) { centroids[i] = data[rand() % data.size()]; } for (int iter = 0; iter < max_iterations; ++iter) { for (const auto& point : data) { double min_distance = std::numeric_limits<double>::max(); int cluster_index = 0; for (int i = 0; i < k; ++i) { double dist = distance(point, centroids[i]); if (dist < min_distance) { min_distance = dist; cluster_index = i; } } clusters[cluster_index].push_back(point); } // 清除前一个的质点 for (auto& cluster : clusters) { cluster.clear(); } // 重新计算质点 for (int i = 0; i < data.size(); ++i) { int cluster_index = 0; double min_distance = std::numeric_limits<double>::max(); for (int j = 0; j < k; ++j) { double dist = distance(data[i], centroids[j]); if (dist < min_distance) { min_distance = dist; cluster_index = j; } } clusters[cluster_index].push_back(data[i]); } std::vector<Point> new_centroids(k); for (int i = 0; i < k; ++i) { new_centroids[i] = centroid(clusters[i]); } bool converged = true; for (int i = 0; i < k; ++i) { if (distance(centroids[i], new_centroids[i]) > 1e-6) { converged = false; break; } } if (converged) { break; } centroids = new_centroids; } // 输出结果 for (int i = 0; i < k; ++i) { std::cout << "Cluster " << i + 1 << " centroid: (" << centroids[i].x << ", " << centroids[i].y << ")" << std::endl; for (const auto& point : clusters[i]) { std::cout << "(" << point.x << ", " << point.y << ") "; } std::cout << std::endl; } } int main() { srand(time(nullptr)); // 随机数种子,可以使用随机数生成数据集 std::vector<Point> data = { // 数据集 {2.0, 10.0}, {2.5, 8.4}, {5.0, 8.0}, {8.0, 8.0}, {1.0, 0.6}, {9.0, 11.0}, {8.0, 5.0}, {1.0, 4.0}, {4.0, 6.0}, {6.0, 9.0} }; int k = 2; // 集群数量 int max_iterations = 5; // 迭代次数 kmeans(data, k, max_iterations); return 0; }
本文链接://www.dmpip.com//www.dmpip.com/showinfo-26-83992-0.html详解 C++ 实现 K-means 算法
声明:本网页内容旨在传播知识,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。邮件:2376512515@qq.com
上一篇: 面试官:限流的常见算法有哪些?
下一篇: C++中提升性能相关的十大特性