Python中有多线程的支持。Python的threading模块提供了多线程编程的基本工具。在下面,我将列举一些基础的多线程用法和一些高级用法,并提供相应的源代码,其中包含中文注释。
import threadingimport time# 定义一个简单的线程类class MyThread(threading.Thread): def run(self): for _ in range(5): print(threading.current_thread().name, "is running") time.sleep(1)# 创建两个线程实例thread1 = MyThread(name="Thread-1")thread2 = MyThread(name="Thread-2")# 启动线程thread1.start()thread2.start()# 主线程等待所有子线程结束thread1.join()thread2.join()print("Main thread exiting")
import threading# 共享资源counter = 0# 创建锁counter_lock = threading.Lock()# 定义一个简单的线程类class MyThread(threading.Thread): def run(self): global counter for _ in range(5): with counter_lock: # 使用锁保护临界区 counter += 1 print(threading.current_thread().name, "Counter:", counter)# 创建两个线程实例thread1 = MyThread(name="Thread-1")thread2 = MyThread(name="Thread-2")# 启动线程thread1.start()thread2.start()# 主线程等待所有子线程结束thread1.join()thread2.join()print("Main thread exiting")
import concurrent.futuresimport time# 定义一个简单的任务函数def task(name): print(f"{name} is running") time.sleep(2) return f"{name} is done"# 使用线程池with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor: # 提交任务给线程池 future_to_name = {executor.submit(task, f"Thread-{i}"): f"Thread-{i}" for i in range(5)} # 获取任务结果 for future in concurrent.futures.as_completed(future_to_name): name = future_to_name[future] try: result = future.result() print(f"{name}: {result}") except Exception as e: print(f"{name}: {e}")
import threadingimport time# 共享资源shared_resource = None# 创建条件变量condition = threading.Condition()# 定义一个写线程class WriterThread(threading.Thread): def run(self): global shared_resource for _ in range(5): with condition: shared_resource = "Write data" print("Writer wrote:", shared_resource) condition.notify() # 通知等待的线程 condition.wait() # 等待其他线程通知# 定义一个读线程class ReaderThread(threading.Thread): def run(self): global shared_resource for _ in range(5): with condition: while shared_resource is None: condition.wait() # 等待写线程通知 print("Reader read:", shared_resource) shared_resource = None condition.notify() # 通知写线程# 创建写线程和读线程writer_thread = WriterThread()reader_thread = ReaderThread()# 启动线程writer_thread.start()reader_thread.start()# 主线程等待所有子线程结束writer_thread.join()reader_thread.join()print("Main thread exiting")
这些例子涵盖了一些基础和高级的多线程用法。请注意,在Python中由于全局解释器锁(GIL)的存在,多线程并不能充分利用多核处理器。如果需要充分利用多核处理器,可以考虑使用multiprocessing模块进行多进程编程。
本文链接://www.dmpip.com//www.dmpip.com/showinfo-26-79601-0.htmlPython多线程编程全解析:基础到高级用法
声明:本网页内容旨在传播知识,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。邮件:2376512515@qq.com